Explore ways you can facilitate your education / research in materials informatics by exploring the list of free resources below.
Large repository of a wide variety of data sources
Search for a data source of interest using Google's datasets search tool.
Sci-kit learn is a python package that allows you to easily implement many machine learning models. This is a popular data science tool for building models that do not involve neural networks.
Krishna Rajan, Materials Today, 38 (2005).
Stefano Curtarolo, Gus L. W. Hart, Marco Buongiorno Nardelli, Natalio Mingo, Stefano Sanvito and Ohad Levy, Nature Materials 12, 191 (2013). DOI: 10.1038/NMAT3568
Rhone, T.D., Chen, W., Desai, S. et al. Data-driven studies of magnetic two-dimensional materials. Sci Rep 10, 15795 (2020). https://doi.org/10.1038/s41598-020-72811-z
Trevor David Rhone, Robert Hoyt, Christopher R. O'Connor, Matthew M. Montemore, Challa S.S.R. Kumar, Cynthia M. Friend and Efthimios Kaxiras, arXiv:1908.10953
Luca M. Ghiringhelli, Jan Vybiral, Sergey V. Levchenko, Claudia Draxl, and Matthias Scheffler,
PRL 114, 105503 (2015)
S. S. Schoenholz, E. D. Cubuk, D. M., Sussman, E. Kaxiras and A. J. Liu,
Nature Physics 12, 469 (2016), DOI: 10.1038/NPHYS3644
Atsuto Seko, Atsushi Togo, Hiroyuki Hayashi, Koji Tsuda, Laurent Chaput, and Isao Tanaka,
PRL 115, 205901 (2015).
M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Physical Review Letters 108(5): 058301, (2012).
M. Mattheakis, P. Protopapas, D. Sondak, M. Di Giovanni, E. Kaxiras, arXiv:1904.08991
Materials Intelligence
Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute
Copyright © 2024 Materials Intelligence - All Rights Reserved.
Powered by GoDaddy Website Builder
We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.